
Correctness of Model Synchronization
Based on Triple Graph Grammars

Frank Hermann1,2, Hartmut Ehrig1, Fernando Orejas3, Krzysztof Czarnecki4, Zinovy
Diskin4, and Yingfei Xiong4

1 Institut für Softwaretechnik und Theoretische Informatik, Technische Universität Berlin,
Germany, {frank,ehrig}@cs.tu-berlin.de

2 Interdisciplinary Center for Security, Reliability and Trust, Université du Luxembourg
3 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,

Barcelona, Spain, orejas(at)lsi.upc.edu
4 Generative Software Development Lab, University of Waterloo, Canada

{kczarnec, zdiskin, yingfei}@gsd.uwaterloo.ca

Abstract. Triple graph grammars (TGGs) have been used successfully to ana-
lyze correctness and completeness of bidirectional model transformations, but a
corresponding formal approach to model synchronization has been missing. This
paper closes this gap by providing a formal synchronization framework with bidi-
rectional update propagation operations. They are generated from a TGG, which
specifies the language of all consistently integrated source and target models.
As a main result, we show that the generated synchronization framework is cor-
rect and complete, provided that forward and backward propagation operations
are deterministic. Correctness essentially means that the propagation operations
preserve consistency. Moreover, we analyze the conditions under which the op-
erations are inverse to each other. All constructions and results are motivated and
explained by a small running example using concrete visual syntax and abstract
syntax notation based on typed attributed graphs.

Keywords: Model Synchronization, Correctness, Bidirectional Model Transfor-
mation, Triple Graph Grammars

1 Introduction

Bidirectional model transformations are a key concept for model generation and syn-
chronization within model driven engineering (MDE, see [22,19,1]). Triple graph gram-
mars (TGGs) have been successfully applied in several case studies for bidirectional
model transformation, model integration and synchronization [17,21,9,8], and in the
implementation of QVT [12]. Inspired by Schürr et al. [20,21], we started to develop
a formal theory of TGGs [7,14], which allows us to handle correctness, completeness,
termination, and functional behavior of model transformations.

The main goal of this paper is to provide a TGG framework for model synchro-
nization with correctness guarantees, which is based on the theory of TGGs, work
on incremental synchronization by Giese et al. [9,8], and the replica synchronization
framework [3]. The main ideas and results are the following:

1. Models are synchronized by propagating changes from a source model to a cor-
responding target model using forward and backward propagation operations. The
operations are specified by a TGG model framework, inspired by symmetric replica
synchronizers [3] and realized by model transformations based on TGGs [7]. The
specified TGG also defines consistency of source and target models.

2. Since TGGs define, in general, non-deterministic model transformations, the de-
rived synchronization operations are, in general, non-deterministic. But we are able
to provide sufficient static conditions based on TGGs to ensure that the operations
are deterministic.

3. The main result shows that a TGG synchronization framework with deterministic
synchronization operations is correct, i.e., consistency preserving, and complete.
We also give sufficient static conditions for invertability and weak invertability of
the framework, where “weak” restricts invertability to a subclass of inputs.

Deriving a synchronization framework from a TGG has the following practical ben-
efits. Consistency of related domains is defined declaritively and in a pattern-based
style, using the rules of a TGG. After executing a synchronization operation, consis-
tency of source and target models is always ensured (correctness) and the propagation
operations can be performed for all valid inputs (completeness). The required static
conditions of a TGG and the additional conditions for invertibility can be checked au-
tomatically using the existing tool support of AGG [23].

The next section presents our running example and Sec. 3 introduces the TGG
model framework. Therafter, we briefly review model transformations based on TGGs
in Sec. 4 and define the general synchronization process in Sec. 5. Section 6 presents the
main result on the correctness of model synchronization. Finally, Secs. 7 and 8 discuss
related work, conclusions, and future work. The proof of our main result is given in a
technical report [15].

2 Running Example

Throughout the paper, we use a simple running example, which is based on previous
work [2]. The example considers the synchronization of two organizational diagrams as
shown in Fig. 1. Diagrams in the first domain—depicted left—provides details about the
salary components and is restricted to persons of the marketing department. The second
domain provides additional information about birth dates (marked by “*”) and does not
show the salary components. Therefore, both domains contain exclusive information
and none of them can be interpreted as a view—defined by a query—of the other. Both
diagrams together with some correspondence structure build up an integrated model,
where we refer by source model to the first and by target model to the second diagram.
Such an integrated model is called consistent, if the diagrams coincide on names of
corresponding persons and the salary values are equal to the sums of the corresponding
base and bonus values.

Example 1 (Integrated Model). The first row of Fig. 1 shows a consistent integrated
model M in visual notation. The source model of M consists of two persons belonging
to the marketing department (depicted as persons without pencils) and the target model

2

Fig. 1. Forward propagation

additionally contains the person “Bill Gates” belonging to the technical department (de-
picted as a person with pencil). The first row of Fig. 7 in Sec. 5 shows the corresponding
underlying formal graph representation of the integrated model.

The synchronization problem is to propagate a model update in a way, such that
the resulting integrated model is consistent. Looking at Fig. 1, we see a source model
update that specifies the removal of person “Bill Clinton” and a change of attributes
LastName and Bonus of person “Melinda French”. The executed forward propaga-
tion (fPpg) removes person “Bill Clinton” and updates the attribute values of “Melinda
French” in the target model, while preserving the unchanged birth date value.

3 Model Synchronization Framework Based on TGGs

Model synchronization aims to achieve consistency among interrelated models. A gen-
eral way of specifying consistency for models of a source and a target domain is to
provide a consistency relation that defines the consistent pairs (MS ,MT) of source and
target models. We argue that triple graph grammars (TGGs) are an adequate technique
for this purpose. For this reason, we first review main concepts of TGGs [21,7].

In the framework of TGGs, an integrated model is represented by a triple graph
consisting of three graphs GS , GC , and GT , called source, correspondence, and target
graphs, respectively, together with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . Our triple graphs may also contain attributed nodes and edges [7,6].
The two mappings in G specify a correspondence r : GS ↔ GT , which relates the
elements of GS with their corresponding elements of GT and vice versa. However, it is
usually sufficient to have explicit correspondences between nodes only. For simplicity,
we use double arrows (↔) as an equivalent shorter notation for triple graphs, whenever
the the explicit correspondence graph can be omitted.

(GS

mS ��

G GCsGoo

mC ��

tG // GT)
mT ��

(HSH
m
��

HC
sH
oo

tH

// HT)

Triple graphs are related by triple graph mor-
phisms m : G → H consisting of three graph
morphisms that preserve the associated correspon-
dences (i.e., the diagrams on the right commute).

Our triple graphs are typed. This means that a type triple graph TG is given (playing
the role of a metamodel) and, moreover, every triple graph G is typed by a triple graph
morphism typeG : G → TG. It is required that morphisms between typed triple graphs
preserve the typing. For TG = (TGS ← TGC → TGT), we use VL(TG), VL(TGS), and
VL(TGT) to denote the classes of all graphs typed over TG, TGS , and TGT , respectively.

3

Fig. 2. Some triple rules of the TGG

A TGG specifies a language of triple graphs, which are considered as consistently
integrated models. The triple rules of a TGG are used to synchronously build up source
and target models, together with the correspondence structures.

(LS
� _trS ��

L LCsLoo
� _

trC ��

tL // LT)
� _trT ��

(RSR

� _tr
��

RC
sR
oo

tR
// RT)

L
m ��

� � tr // R
n��(PO)

G �
�

t
// H

A triple rule tr, depicted on the
right, is an inclusion of triple graphs,
represented L ↪→ R. Notice that one
or more of the rule components trS ,
trC , and trT may be empty. In the example, this is the case for a rule concerning em-
ployees of the technical department within the target model. A triple rule is applied to
a triple graph G by matching L to some sub triple graph of G. Technically, a match is a
morphism m : L→ G. The result of this application is the triple graph H, where L is re-
placed by R in G. Technically, the result of the transformation is defined by a pushout di-
agram, as depicted above on the right. This triple graph transformation (TGT) step is de-
noted by G =

tr,m
==⇒ H. Moreover, triple rules can be extended by negative application con-

ditions (NACs) for restricting their application to specific matches [14]. A triple graph
grammar TGG = (TG, S ,TR) consists of a triple type graph TG, a triple start graph S
and a set TR of triple rules and generates the triple graph language VL(TGG) ⊆ VL(TG).

Example 2 (Triple Rules). Figure 2 shows some triple rules of our running exam-
ple using short notation, i.e., left- and right-hand side of a rule are depicted in one
triple graph and the elements to be created have the label “++”. The first rule Per-
son2NextMarketingP requires an existing marketing department. It creates a new per-
son in the target component together with its corresponding person in the source compo-
nent and the explicit correspondence structure. The TGG contains a similar rule (not de-
picted) for initially creating the marketing department together with one person, where
an additional NAC ensures that none of the existing departments is called “Marketing”.
The second rule in Fig. 2 extends two corresponding persons by their first names. There
are further similar rules for the handling of the remaining attributes. In particular, the
rule for the attribute birth is the empty rule on the source component.

A TGG model framework specifies the possible correspondences between models
and updates of models according to Def. 1 below. The framework is closely related
to the abstract framework for diagonal replica synchronizers [3] and triple spaces [4].
In our context, a model update δ : G → G′ is specified as a graph modification δ :
G ←i1−− I −i2−→ G′. The relating morphisms i1 : I ↪→ G and i2 : I ↪→ G′ are inclusions and
specify the elements in the interface I that are preserved by the modification. While
graph modifications are also triple graphs by definition, it is conceptually important to
distinguish between correspondences and updates δ.

4

(a1) :

∀ c ∈ C :

GS oo c //

1 �� u:fPpg

GT

1��

GS oo
c
// GT

(a2) :

∀ G′S ∈ VLS :

GS oo r //

a �� u:fPpg

GT

b��

G′S oo
r′:C
// G′T

(b1) :

∀ c ∈ C :

GS oo c //

1 ��w:bPpg

GT

1��

GS oo
c
// GT

(b2) :

∀ G′T ∈ VLT :

GS oo r //

a �� w:bPpg

GT

b��

G′S oo
r′:C
// G′T

(c1) :

GS oo r //

a1
�� u:fPpg

GT

b�� u:bPpg

GS//roo oo r //

a2
�� u:fPpg

GT

b��

GS
1
oo

r1
// G′T GS

2
//

r2
oo oo

r2
// G′T

(d1) :

GS oo r //

a1 �� u:fPpg

GT

b�� u:bPpg

GS//roo

a2��

G′S oo
r′

// G′T G′S//
r′

oo

(c2) :

GT oo r //

b1 �� u:bPpg

GS

a
�� u:fPpg

GT//roo oo r //

b2�� u:bPpg

GS

a
��

GT
1
oo

r1
// G′S GT

2
//

r2
oo oo

r2
// G′S

(d2) :

GT oo r //

b1 �� u:bPpg

GS

a�� u:fPpg

GT//roo

b2��

G′T oo
r′

// G′S G′T//
r′

oo

Fig. 4. Laws for correct and (weak) invertible synchronization frameworks

Definition 1 (TGG Model Framework). Let TGG = (TG,∅,TR) be a triple graph
grammar with empty start graph. The derived TGG model framework MF(TGG) =

(VL(TGS),VL(TGT),R,C, ∆S , ∆T) consists of source domain VL(TGS), target domain
VL(TGT), the set R of correspondence relations given by R = VL(TG), the set C of
consistent correspondence relations C ⊆ R given by C = VL(TGG), (i.e., R contains
all integrated models and C all consistently integrated ones), and sets ∆S , ∆T of graph
modifications for the source and target domains, given by ∆S = {a : GS → G′S |
GS ,G′S ∈ VL(TGS), and a is a graph modification} and ∆T = {b : GT → G′T | GT ,
G′T ∈ VL(TGT), and b is a graph modification}, respectively.

GS oo r //

a �� u:fPpg

GT

b��

G′S oo
r′
// G′T

GS oo r //

a �� w:bPpg

GT

b��

G′S oo
r′
// G′T

Fig. 3. Synchronization operations

Given a TGG model framework, the syn-
chronization problem is to provide suitable for-
ward and backward propagation operations fPpg
and bPpg, which are total and deterministic (see
Fig. 3, where we use solid lines for the inputs
and dashed lines for the outputs). The required
input for fPpg is an integrated model (correspondence relation) GS ↔ GT together
with a source model update (graph modification) a : GS → G′S . In a common tool
environment, both inputs are either available directly or can be obtained. For exam-
ple, the graph modification of a model update can be derived via standard difference
computation and the initial correspondence can be computed based on TGG integration
concepts [5,17]. Note that determinism of fPpg means that the resulting correspondence
G′S ↔ G′T and target model update b : GT → G′T are uniquely determined. The prop-
agation operations are correct, if they additionally preserve consistency as specified
by laws (a1) − (b2) in Fig. 4. Law (a2) means that fPpg always produces consistent
correspondences from consistent updated source models G′S . Law (a1) means that if
the given update is the identity and the given correspondence is consistent, then fPpg
changes nothing. Laws (b1) and (b2) are the dual versions concerning bPpg. Moreover,
the sets VLS and VLT specify the consistent source and target models, which are given
by the source and target components of the integrated models in C = VL(TGG).

5

Definition 2 (Synchronization Problem and Framework). Let MF = (VL(TGS),
VL(TGT),R,C, ∆S , ∆T) be a TGG model framework (see Def. 1). The forward syn-
chronization problem is to construct an operation fPpg : R ⊗ ∆S → R × ∆T

leading to the left diagram in Fig. 3, called synchronization tile, where R ⊗ ∆S =

{(r, a) ∈ R × ∆S |r : GS ↔ GT , a : GS → G′S }, i.e., a and r coincide on GS . The pair
(r, a) ∈ R ⊗ ∆S is called premise and (r′, b) ∈ R × ∆T is called solution of the forward
synchronization problem, written fPpg(r, a) = (r′, b). The backward synchronization
problem is to construct an operation bPpg leading to the right diagram in Fig. 3. The
operations fPpg and bPpg are called correct with respect to consistency function C, if
axioms (a1) and (a2) resp. (b1) and (b2) in Fig. 4 are satisfied.

Given propagation operations fPpg and bPpg, the derived synchronization frame-
work Synch(TGG) is given by Synch(TGG) = (MF, fPpg, bPpg). It is called correct, if
fPpg and bPpg are correct; it is weakly invertible if axioms (c1) and (c2) in Fig. 4 are
satisfied; and it is invertible if additionally axioms (d1) and (d2) in Fig. 4 are satisfied.

Remark 1 (Correctness and Invertibility). Correctness of fPpg according to (a1) means
that for each consistent correspondence c : GS ↔ GT and identity as modification
1 : GS → GS we have an identical result, i.e. , fPpg(c, 1) = (c, 1). According to (a2), we
have for each general correspondence r : GS ↔ GT and modification a : GS → G′S with
consistent source model G′S ∈ VLS a solution (r′, b) = fPpg(r, a), where r′ : G′S ↔ G′T

is consistent, i.e., r′ ∈ C. Note that also for non-consistent r : GS ↔ GT the result
r′ : G′S ↔ G′T is consistent, provided that G′S is consistent.

Weak invertibility (laws (c1) and (c2)) imply that the operations are inverse of each
other for a restricted set of inputs. Update b in (c1) is assumed to be part of the result
of a forward propagation and update a in (c2) is assumed to be derived from a back-
ward propagation. Invertibility ((d1) and (d2)) means that the operations are essentially
inverse of each other, although the interfaces of a1 and a2 (resp. b1 and b2) may be dif-
ferent. Invertibility requires effectively that all information in one domain is completely
reflected in the other domain.

4 Model Transformation Based on TGGs

The operational rules for implementing bidirectional model transformations can be
generated automatically from a TGG. The sets TRS and TRF contain all source and
forward rules, respectively, and are derived from the triple rules TR as shown in the
diagrams below. The rules are used to implement source-to-target transformations. The
sets of target rules TRT and backward rules TRB are derived analogously and the gen-
eration of operational rules has been extended to triple rules with negative application
conditions [7].

(LS

trS ��

L LCsLoo

trC ��

tL // LT)
trT ��

(RSR
tr ��

RC
sR
oo

tR
// RT)

triple rule tr

(LS

trS ��

∅oo

��

// ∅)
��

(RS ∅oo // ∅)
source rule trS

(RS

id ��

LCtrS ◦sLoo

trC ��

tL // LT)
trT��

(RS RCsRoo
tR // RT)

forward rule trF

Example 3 (Operational Rules). The rules in Fig. 5 are the derived source and forward
rules of the triple rule FName2FName in Fig. 2.

6

Fig. 5. Derived source and forward rules

The derived operational rules provide the basis for the definition of model transfor-
mations based on source-consistent forward transformation sequences [7,11]. Source

consistency of a forward sequence (G0 =
tr∗F
==⇒ Gn) via TRF is a control condition which

requires that there is a corresponding source sequence (∅ =
tr∗S
=⇒ G0) via TRS , such that

matches of corresponding source and forward steps are compatible (nS
i,S (x) = mS

i,F(x)).
The source sequence is obtained by parsing the given source model in order to guide the
forward transformation. Moreover, source and forward sequences can be constructed
simultaneously and backtracking can be reduced in order to derive efficient execu-
tions of model transformations [7,14]. Given a source model GS , a model transfor-

mation sequence for GS is given by (GS , G0 =
tr∗F
=⇒ Gn,GT), where GT is the resulting

target model derived from the source-consistent forward sequence G0 =
tr∗F
==⇒ Gn with

G0 = (GS ← ∅→ ∅) and Gn = (GS ← GC → GT).
Model transformations based on model transformation sequences are always syntac-

tically correct and complete [7,11,14]. Correctness means that for each source model
GS that is transformed into a target model GT there is a consistent integrated model
G = (GS ← GC → GT) in the language of consistent integrated models VL(TGG) de-
fined by the TGG. Completeness ensures that for each consistent source model there is
a forward transformation sequence transforming it into a consistent target model.

The concept of forward translation rules [14] provides a simple way of implement-
ing model transformations such that source consistency is ensured automatically. A
forward translation rule trFT extends the forward rule trF by additional Boolean valued
translation attributes, which are markers for elements in the source model and specify
whether the elements have been translated already. Each forward translation rule trFT

turns the markers of the source elements that are translated by this rule from F to T
(i.e., the elements that are created by trS). The model transformation is sucessfully ex-
ecuted if the source model is completely marked with T. We indicate these markers in
the examples by checkmarks in the visual notation and by bold font face in the graph
representation. Similarly, from the triple rules, we can also create marking rules [15],
which, given an integrated model (GS ↔ GT), simulate the creation of the model by
marking its elements. If all elements are marked with T, then (GS ↔ GT) belongs to
VL(TGG).

5 General Synchronization Process Based on TGGs

This section shows how to construct the operation fPpg of a TGG synchronization
framework (see Def. 2) as a composition of auxiliary operations 〈fAln, Del, fAdd〉.
Symmetrically, operations 〈bAln, Del, bAdd〉 are used to define the operation bPpg.

7

Signature Definition of Components

GS oo
r=(s,t)

//

a=

(a1 ,a2)
��
u:fAln

GT

1
��

G′S oo
r′=(s′ ,t′)

// GT

GS

(PB)

GCsoo t // GT

DS
?�

a1

OO

DC
?�

a∗1

OO

s∗
oo

s′ = a2 ◦ s∗,
t′ = t ◦ a∗1

GS oo
r=(s,t)

//

a=

(f S ,1)
��
⇓:Del

GT

b=

(f T ,1)
��

GS
k
oo

r′=(sk ,tk):C
// GT

k

G = (GS GCsoo t // GT)

∅
tr∗ +3 Gk = (GS

k

?�
f S

OO

?�
f

OO

GC
k

?�
f C

OO

skoo
tk // GT

k)
?�

f T

OO ∅ =
tr∗
=⇒ Gk

is maximal w.r.t.
Gk ⊆ G

∀ G′S ∈ VLS :

GS oo
r=(s,t):C

//

a=

(1,a2)
��
u:fAdd

GT

b=
(1,b2)
��

G′S oo
r′=(s′ ,t′)

// G′T

(GS
� _

a2 ��

G GCsoo t //
� _

1
��

GT)
� _

1
��

(G′S
� _

1 ��

G0

� _
g
��

GC
� _

��

a2◦soo t // GT)
� _

b2 ��

(G′SG′
tr∗F ��

G′C
s′oo t′ // G′T)

G0 =
tr∗F
==⇒ G′

with G′ ∈ VL(TGG)

Fig. 6. Auxiliary operations fAln, Del and fAdd

As a general requirement, the given TGG has to provide deterministic sets of opera-
tional rules, meaning that the algorithmic execution of the forward translation, back-
ward translation, and marking rules ensures functional behavior (unique results) and
does not require backtracking. For this purpose, additional policies can be defined that
restrict the matches of operational rules [15], as discussed in Ex. 5 in Sec. 6. Fact 1
in Sec. 6 provides sufficient conditions for deterministic operational rules. We provide
additional static conditions and automated checks in the technical report [15].

The general synchronization process is performed as follows (see Fig. 6; we use
double arrows (↔) for correspondence in the signature of the operations, and the ex-
plicit triple graphs for the construction details). Given two corresponding models GS

and GT and an update of GS via the graph modification a = (GS
←

a1
−− DS

−
a2
−→ G′S) with

G′S ∈ VLS , the forward propagation fPpg of δS is performed in three steps via the auxil-
iary operations fAln, Del, and fAdd. At first, the deletion performed in a is reflected into
the correspondence relation between GS and GT by calculating the forward alignment
remainder via operation fAln. This step deletes all correspondence elements whose el-
ements in GS have been deleted. In the second step, performed via operation Del, the
two maximal subgraphs GS

k ⊆ GS and GT
k ⊆ GT are computed such that they form a

consistent integrated model in VL(TGG) according to the TGG. All elements that are
in GT but not in GT

k are deleted, i.e., the new target model is given by GT
k . Finally, in

the last step (operation fAdd), the elements in G′S that extend GS
k are transformed to

corresponding structures in G′T , i.e., GT
k is extended by these new structures. The result

of fAdd, and hence also fPpg, is a consistent integrated model.

Definition 3 (Auxiliary TGG Operations). Let TGG = (TG,∅,TR) be a TGG with
deterministic sets of operational rules and let further MF(TGG) be the derived TGG
model framework.

8

1. The auxiliary operation fAln computing the forward alignment remainder is given
by fAln(r, a) = r′, as specified in the upper part of Fig. 6. The square marked by
(PB) is a pullback, meaning that DC is the intersection of DS and GC .

2. Let r = (s, t) : GS ↔ GT be a correspondence relation, then the result of the aux-
iliary operation Del is the maximal consistent subgraph GS

k ↔ GT
k of r, given by

Del(r) = (a, r′, b), which is specified in the middle part of Fig. 6.
3. Let r = (s, t) : GS ↔ GT be a consistent correspondence relation, a = (1, a2) :

GS → G′S be a source modification and G′S ∈ VLS . The result of the auxiliary
operation fAdd, for propagating the additions of source modification a, is a consis-
tent model G′S ↔ G′T extending GS ↔ GT , and is given by fAdd(r, a) = (r′, b),
according to the lower part of Fig. 6.

Remark 2 (Auxiliary TGG Operations). Intuitively, operation fAln constructs the new
correspondence graph DC from the given GC by deleting all correspondence elements
in GC whose associated elements in GS are deleted via update a and, for this reason, do
not occur in DS . Operation Del is executed by applying marking rules (cf. Sec. 4) to the
given integrated model until no rule is applicable any more. If, at the end, GS ↔ GT

is completely marked, the integrated model is already consistent; otherwise, the result
is the largest consistent integrated model included in GS ↔ GT . Technically, the ap-
plication of the marking rules corresponds to a maximal triple rule sequence as shown
in the right middle part of Fig. 6 and discussed in more detail in [15]. Finally, fAdd is
executed by applying forward translation rules (cf. Sec. 4) to G′S ↔ GT until all the
elements in G′S are marked. That is, these TGT steps build a model transformation of
G′S extending GT . Technically, the application of the forward translation rules corre-
sponds to a source-consistent forward sequence from G0 to G′, as shown in the right
lower part of Fig. 6. By correctness of model transformations [7], the sequence implies
consistency of G′ as stated above. The constructions for these auxiliary operations are
provided in full detail in [15].

Example 4 (Forward Propagation via Operation fPpg). Figure 7 shows the application
of the three steps of synchronization operation fPpg to the visual models of our running
example. After removing the dangling correspondence node of the alignment in the first
step (fAln), the maximal consistent subgraph of the integrated model is computed (Del)
by stepwise marking the consistent parts: consistent parts are indicated by grey boxes
with checkmarks in the visual notation and by bold font faces in the graph representa-
tion. Note that node “Bill Gates” is part of the target graph in this maximal consistent
subgraph, even though it is not in correspondence with any element of the source graph.
In the final step (fAdd), the inconsistent elements in the target model are removed and
the remaining new elements of the update are propagated towards the target model by
model transformation, such that all elements are finally marked as consistent.

Definition 4 (Derived TGG Synchronization Framework). Let TGG = (TG,∅,TR)
be a TGG with deterministic sets of derived operational rules and with derived model
framework MF(TGG), then operation fPpg of the derived TGG synchronization frame-
work is given according to Def. 2 by the composition of auxiliary operations (fAln, Del,
fAdd) with construction in Rem. 3. Symmetrically—not shown explicitly—we obtain
bPpg as composition of auxiliary operations (bAln, Del, bAdd).

9

Fig. 7. Forward propagation in detail: visual notation (top) and graph representation (bottom)

10

Signature Definition of Components

∀ G′S ∈ VLS :

GS oo r //

a
��
u:fPpg

GT

b
��

G′S oo
r′
// G′T

GS oo r //

aA �� u:fAln

a

//

GT

1��

b

oo

DS oo r1 //

aD �� ⇓:Del

GT

bD��

GS
k
oo r2 //

a f �� u:fAdd

GT
k
b f��

G′S oo
r′
// G′T

a = (a1, a2)
= (GS

←
a1
−− DS

−
a2
−→ G′S)

aA = (a1, 1)
aD = (a′1, 1)
a f = (a1 ◦ a′1, a2)
b = b f ◦ bD

1 /* == alignment remainder == */
2 forall(correpondence nodes without image in the source model){
3 delete these elements }
4 /* ==== delete === */
5 while(there is a triple rule p such that R\L is unmarked){
6 apply to G the marking rule corresponding to p }
7 forall(unmarked nodes and edges from the target model){
8 delete these elements }
9 /* ===== add ===== */

10 while(there is a forward translation rule applicable to G){
11 apply to G the forward translation rule }

Fig. 8. Synchronization operation fPpg - top: formal definition, bottom: algorithm

Remark 3 (Construction of fPpg according to Fig. 8). Given a not necessarily con-
sistent integrated model r : GS ↔ GT and source model update a : GS → G′S with
G′S ∈ VLS , we compute fPpg(r, a) as follows. First, fAln computes the correspondence
(DS ↔ GT), where DS is the part of GS that is preserved by update a. Then, Del com-
putes its maximal consistent integrated submodel (GS

k ↔ GT
k). Finally, fAdd composes

the embedding GS
k → G′S with correspondence (GS

k ↔ GT
k) leading to (G′S ↔ GT

k),
which is then extended into the consistent integrated model (G′S ↔ G′T) via forward
transformation. If G′S < VLS , then the result is given by b = (1, 1) : GT → GT together
with the correspondence relation r′ = (∅,∅) and additionally, an error message is pro-
vided. The bottom part of Fig. 8 describes this construction algorithmically in pseudo
code, leaving out the error handling; marking is explained in Sec. 4.

6 Correctness of Model Synchronization Based on TGGs

Based on the derived TGG synchronization framework (Def. 4), we now state our main
result concerning correctness, completeness, and invertibility. The proofs and full tech-
nical details are provided in the technical report [15]. According to Def. 2, correctness
requires that the synchronization operations are deterministic, i.e., they have functional
behaviour and ensure laws (a1) - (b2). Concerning the first property, Fact 1 below pro-
vides a sufficient condition based on the notion of critical pairs [6], which is used in the
automated analysis engine of the tool AGG [23]. A critical pair specifies a conflict be-

11

tween two rules in minimal context. Solving a conflict means to find compatible merg-
ing transformation steps, which is formalized by the notion of strict confluence [6]. The
result is provided for almost injective matches, which means that matches are injective
on the graph part and may evaluate different attribute expressions to the same values.
Completeness requires that operations fPpg and bPpg can be successfully applied to
all consistent source models G′S ∈ VLS and target models G′T ∈ VLT , respectively.
For this reason, additional propagation policies are defined in order to eliminate non-
determinism. They can be seen as a kind of application conditions for the rules and
are called conservative, if they preserve the completeness result. By Fact 2 in [15], we
provided a sufficient static condition for checking this property.

Fact 1 (Deterministic Synchronization Operations). Let TGG be a triple graph
grammar and let matches be restricted to almost injective morphisms. If the critical
pairs of the sets of operational rules are strictly confluent and the systems of rules are
terminating, then the sets of operational rules are deterministic, which implies that the
derived synchronization operations fPpg and bPpg are deterministic as well.

Remark 4 (Termination). In order to ensure termination of the TGG constructions, we
can check that each operational rule is modifying at least one translation attribute (cf.
Sec. 4), which is a sufficient condition as shown by Thm. 1 in [14] for model transfor-
mation sequences.

Invertibility of propagation operations depends on additional properties of a TGG.
For this purpose, we distinguish between different types of triple rules. By TR+s we de-
note the triple rules of TR that are creating on the source component and by TR1s those
that are identical on the source component and analogously for the target component.
A TGG is called pure, if TR1s ⊆ TRT and TR1t ⊆ TRS meaning that the source-identic
triple rules are empty rules on the source and correspondence components and analo-
gously for the target-identic triple rules. According to Thm. 1 below, weak invertibility
is ensured if the TGG is pure and at most one set of operational rules is restricted by a
conservative policy. In the more specific case that all triple rules of a TGG are creating
on the source and target components (TR = TR+s = TR+t), then the TGG is called tight,
because the derived forward and backward rules are strongly related. This additional
property ensures invertibility meaning that fPpg and bPpg are inverse to each other
when considering the resulting models only.

Theorem 1 (Correctness, Completeness, and Invertibility). Let Synch(TGG) be a
derived TGG synchronization framework, such that the sets of operational rules of TGG
are deterministic. Then Synch(TGG) is correct and complete. If, additionally, TGG is
pure and at most one set of operational rules was extended by a conservative policy,
then Synch(TGG) is weakly invertible and if, moreover, TGG is tight and no policy was
applied, then Synch(TGG) is also invertible.

Example 5 (Correctness, Completeness, Invertibility, and Scalability). The initially de-
rived set of backward transformation rules for our running example is not completely
deterministic because of the non-deterministic choice of base and bonus values for prop-
agating the change of a salary value. Therefore, we defined a conservative policy for

12

the responsible backward triple rule by fixing the propagated values of modified salary
values to bonus = base = 0.5 × salary. By Fact 2 in [15], we provided a sufficient
static condition for checking that a policy is conservative; we validated our example
and showed that the derived operations fPpg and bPpg are deterministic. For this rea-
son, we can apply Thm. 1 and verify that the derived TGG synchronization framework
is correct and complete. Since, moreover, the TGG is pure and we used the conserva-
tive policy for the backward direction only, Thm. 1 further ensures that Synch(TGG)
is weakly invertible. However, it is not invertible in the general sense, as shown by a
counter example in [15], which uses the fact that information about birth dates is stored
in one domain only. The automated validation for our example TGG with 8 rules was
performed in 25 seconds on a standard consumer notebook via the analysis engine of
the tool AGG [23]. We are confident that the scalability of this approach can be signifi-
cantly improved with additional optimizations.

In the case that the specified TGG does not ensure deterministic synchronization
operations, there are still two options for synchronization that ensure correctness and
completeness. On the one hand, the triple rules can be modified in a suitable way, such
that the TGG can be verified to be deterministic. For this purpose, the critical pair anal-
ysis engine of the tool AGG [23] can be used to analyze conflicts between the generated
operational rules. Moreover, backtracking can be reduced or even eliminated by gen-
erating additional application conditions for the operational rules using the automatic
generation of filter NACs [14]. On the other hand, the TGG can be used directly, lead-
ing to nondeterministic synchronization operations, which may provide several possible
synchronization results.

7 Related Work

Triple graph grammars have been successfully applied in multiple case studies for bidi-
rectional model transformation, model integration and synchronization [17,21,9,8], and
in the implementation of QVT [12]. Moreover, several formal results are available con-
cerning correctness, completeness, termination [7,10], functional behavior [16,10], and
optimization with respect to the efficiency of their execution [14,18,10]. The presented
constructions for performing model transformations and model synchronizations are
inspired by Schürr et al. [20,21] and Giese et al. [8,9], respectively. The constructions
formalize the main ideas of model synchronization based on TGGs in order to show cor-
rectness and completeness of the approach based on the results known for TGG model
transformations.

Perdita Stevens developed an abstract state-based view on symmetric model syn-
chronization based on the concept of constraint maintainers [22] and Diskin described
a more general delta-based view within the tile algebra framework [3]. The construc-
tions in the present paper are inspired by tile algebra and follow the general framework
presented by Diskin et al. [4], where propagation operations are defined as the compo-
sition of two kinds of operations: alignment and consistency restoration. In the current
paper, operations fAln and bAln take care of the alignment by removing all correspon-
dence nodes that would be dangling due to deletions via the given model update. Then,

13

operations Del and fAdd resp. bAdd provide the consistency restoration by first mark-
ing the consistent parts of the integrated model and then propagating the changes and
deleting the remaining inconsistent parts.

Giese et al. introduced incremental synchronization techniques based on TGGs in
order to preserve consistent structures of the given models by revoking previously per-
formed forward propagation steps and their dependent ones [9]. This idea is generalized
by the auxiliary operation Del in the present framework, which ensures the preservation
of maximal consistent substructures and extends the application of synchronization to
TGGs that are not tight or contain rules with negative application conditions. Giese et
al. [8] and Greenyer et al. [13] proposed to extend the preservation of substructures
by allowing for the reuse of any partial substructure of a rule causing, however, non-
deterministic behavior. Moreover, a partial reuse can cause unintended results. Con-
sider, e.g., the deletion of a person A in the source domain and the addition of a new
person with the same name, then the old birth date of person A could be reused.

In order to improve efficiency, Giese et al. [9,8] proposed to avoid the computation
of already consistent substructures by encoding the matches and dependencies of rule
applications within the correspondences. In the present framework, operation Del can be
extended conservatively by storing the matches and dependency information separately,
such that the provided correctness and completeness results can be preserved [15].

8 Conclusion and Future Work

Based on our formal framework for correctness, completeness, termination and func-
tional behavior of model transformations using triple graph grammars (TGGs) [7,14],
we have presented in this paper a formal TGG framework for model synchronization
inspired by [9,8,20,21]. The main result (Thm. 1) shows correctness, completeness and
(weak) invertibility, provided that the derived synchronization operations are determin-
istic. For this property, sufficient static conditions are provided (Fact 1) based on
general results for TGGs in [14].

In future work, the tool Henshin based on AGG [23] will be extended to imple-
ment the synchronization algorithm for forward propagation in Fig. 8. Moreover, the
relationship with lenses [22] and delta based bidirectional transformations [4] will be
studied in more detail, especially in view of composition of lenses leading to composi-
tion of synchronization operations. Furthermore, we will study synchronization based
on non-deterministic forward and backward propagation operations in more detail.

References

1. Czarnecki, K., Foster, J., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirectional Trans-
formations: A Cross-Discipline Perspective. In: Proc. ICMT’09. LNCS, vol. 5563, pp. 260–
283. Springer (2009)

2. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional Model Trans-
formations: the Asymmetric Case. Journal of Object technology 10, 6:1–25 (2011)

3. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Generative and
Transformational Techniques in Software Engineering III, LNCS, vol. 6491, pp. 92–165.
Springer (2011)

14

4. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From State- to Delta-
based Bidirectional Model Transformations: The Symmetric Case. In: Proc. MODELS 2011.
Springer (2011)

5. Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration based
on the Algebraic Approach to Triple Graph Grammars. EC-EASST 10 (2008)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theor. Comp. Science, Springer (2006)

7. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correctness and
Completeness of Model Transformations based on Triple Graph Grammars. In: Proc.
MODELS’09. LNCS, vol. 5795, pp. 241–255. Springer (2009)

8. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models . Tech.
Rep. 28, Hasso Plattner Institute at the University of Potsdam (2009)

9. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and Systems Modeling 8(1), 21–43 (2009)

10. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal Seman-
tics and Implementation of Triple Graph Grammars . Tech. Rep. 37, Hasso Plattner Institute
at the University of Potsdam (2010)

11. Golas, U., Ehrig, H., Hermann, F.: Formal Specification of Model Transformations by Triple
Graph Grammars with Application Conditions. EC-EASST 39 (2011)

12. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: imple-
menting query/view/transformation with triple graph grammars. Software and Systems Mod-
eling (SoSyM) 9(1), 21–46 (2010)

13. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model syn-
chronization by reusing elements. In: Proc. ECMFA 2011. LNCS, vol. 6698, pp. 144–159.
Springer Verlag (2011)

14. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct
and Complete Model Transformations Based on Triple Graph Grammars. In: Proc. MDI’10
(2010)

15. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model
Synchronization Based on Triple Graph Grammars - Extended Version. Tech. Rep. TR 2011-
07, TU Berlin, Fak. IV (2011)

16. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal Analysis of Functional Behaviour of
Model Transformations Based on Triple Graph Grammars. In: Proc. ICGT’10. LNCS, vol.
6372, pp. 155–170. Springer (2010)

17. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. Tech. Rep. TR-ri-07-284, Department of Computer Science, Univer-
sity of Paderborn, Germany (2007)

18. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient
and Compatible Graph Translators. In: Graph Transformations and Model Driven Enginer-
ing, LNCS, vol. 5765, pp. 141–174. Springer Verlag (2010)

19. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Version 1.0 formal/08-04-03. http://www.omg.org/spec/QVT/1.0/ (2008)

20. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Proc.
WG’94. LNCS, vol. 903, pp. 151–163. Springer Verlag, Heidelberg (1994)

21. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Proc. ICGT’08. LNCS, vol.
5214, pp. 411–425 (2008)

22. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and Open Ques-
tions . Software and Systems Modeling 9, 7–20 (2010)

23. TFS-Group, TU Berlin: AGG (2011), http://tfs.cs.tu-berlin.de/agg

15

http://tfs.cs.tu-berlin.de/agg

	 Correctness of Model Synchronization Based on Triple Graph Grammars

